Tuesday, September 4, 2007

Silicon Nanoparticles and Solar Cells


Silicon Nanoparticles and Solar Cells


Placing a film of silicon nanoparticles onto a silicon solar cell can boost power, reduce heat and prolong the cell's life, researchers now report.


"Integrating a high-quality film of silicon nanoparticles 1 nanometer in size directly onto silicon solar cells improves power performance by 60 percent in the ultraviolet range of the spectrum," said Munir Nayfeh, a physicist at the University of Illinois and corresponding author of a paper accepted for publication in Applied Physics Letters.


A 10 percent improvement in the visible range of the spectrum can be achieved by using nanoparticles 2.85 nanometers in size, said Nayfeh, who also is a researcher at the university's Beckman Institute.


In conventional solar cells, ultraviolet light is either filtered out or absorbed by the silicon and converted into potentially damaging heat, not electricity. In previous work, however, Nayfeh showed that ultraviolet light could efficiently couple to correctly sized nanoparticles and produce electricity. That work was reported in the August 2004 issue of the journal Photonics Technology Letters.


To make their improved solar cells, the researchers began by first converting bulk silicon into discrete, nano-sized particles using a patented process they developed. Depending on their size, the nanoparticles will fluoresce in distinct colors.


Nanoparticles of the desired size were then dispersed in isopropyl alcohol and dispensed onto the face of the solar cell. As the alcohol evaporated, a film of closely packed nanoparticles was left firmly fastened to the solar cell.


Solar cells coated with a film of 1 nanometer, blue luminescent particles showed a power enhancement of about 60 percent in the ultraviolet range of the spectrum, but less than 3 percent in the visible range, the researchers report.


Solar cells coated with 2.85 nanometer, red particles showed an enhancement of about 67 percent in the ultraviolet range, and about 10 percent in the visible.


The improved performance is a result of enhanced voltage rather than current, Nayfeh said. "Our results point to a significant role for charge transport across the film and rectification at the nanoparticle interface."


The process of coating solar cells with silicon nanoparticles could be easily incorporated into the manufacturing process with little additional cost, Nayfeh said.


With Nayfeh, the paper's co-authors are graduate student and lead author Matthew Stupca at Illinois, professor Mohamed Alsalhi at King Saud University in Saudi Arabia, and professors Turki Al Saud and Abdulrahman Almuhanna, both at the King Abdulaziz City for Science and Technology in Saudi Arabia.


The research was funded by the National Science Foundation, the state of Illinois, the Grainger Foundation and the U. of I.


Inexpensive Solar Cell R&D



Researchers at New Jersey Institute of Technology (NJIT) have developed an inexpensive solar cell that can be painted or printed on flexible plastic sheets. "The process is simple," said lead researcher and author Somenath Mitra, PhD, professor and acting chair of NJIT's Department of Chemistry and Environmental Sciences. "Someday homeowners will even be able to print sheets of these solar cells with inexpensive home-based inkjet printers. Consumers can then slap the finished product on a wall, roof or billboard to create their own power stations."


"Fullerene single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells," featured as the June 21, 2007 cover story of the Journal of Materials Chemistry published by the Royal Society of Chemistry, details the process. The Society, based at Oxford University, is the British equivalent of the American Chemical Society.


Harvesting energy directly from abundant solar radiation using solar cells is increasingly emerging as a major component of future global energy strategy, said Mitra. Yet, when it comes to harnessing renewable energy, challenges remain. Expensive, large-scale infrastructures such as wind mills or dams are necessary to drive renewable energy sources, such as wind or hydroelectric power plants. Purified silicon, also used for making computer chips, is a core material for fabricating conventional solar cells. However, the processing of a material such as purified silicon is beyond the reach of most consumers.


"Developing organic solar cells from polymers, however, is a cheap and potentially simpler alternative," said Mitra. "We foresee a great deal of interest in our work because solar cells can be inexpensively printed or simply painted on exterior building walls and/or roof tops. Imagine some day driving in your hybrid car with a solar panel painted on the roof, which is producing electricity to drive the engine. The opportunities are endless. "


The science goes something like this. When sunlight falls on an organic solar cell, the energy generates positive and negative charges. If the charges can be separated and sent to different electrodes, then a current flows. If not, the energy is wasted. Link cells electronically and the cells form what is called a panel, like the ones currently seen on most rooftops. The size of both the cell and panels vary. Cells can range from 1 millimeter to several feet; panels have no size limits.


The solar cell developed at NJIT uses a carbon nanotubes complex, which by the way, is a molecular configuration of carbon in a cylindrical shape. The name is derived from the tube's miniscule size. Scientists estimate nanotubes to be 50,000 times smaller than a human hair. Nevertheless, just one nanotube can conduct current better than any conventional electrical wire. "Actually, nanotubes are significantly better conductors than copper," Mitra added.


Mitra and his research team took the carbon nanotubes and combined them with tiny carbon Buckyballs (known as fullerenes) to form snake-like structures. Buckyballs trap electrons, although they can't make electrons flow. Add sunlight to excite the polymers, and the buckyballs will grab the electrons. Nanotubes, behaving like copper wires, will then be able to make the electrons or current flow.


"Using this unique combination in an organic solar cell recipe can enhance the efficiency of future painted-on solar cells," said Mitra. "Someday, I hope to see this process become an inexpensive energy alternative for households around the world."






Technorati : , , ,
Del.icio.us : , , ,
Ice Rocket : , , ,
Flickr : , , ,
Zooomr : , , ,
Buzznet : , , ,
Riya : , , ,
43 Things : , , ,

No comments: